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Abstract - It is common in applied work in engineering such as the search for buried land mines, or
in medical imaging for diagnosis of possible breast tumors, to have only limited boundary measurement
data, back reflected in the first case or transmitted in the second. Here we formulate the problem as one
of coefficient recovery from incomplete boundary data in inverse problems. We have completed a new
implementation of the Elliptic Systems Method (ESM) in time dependent diffusion tomography. The
basic formulation of the ESM involves solving a system of (typically 4) coupled 4th-order PDE’s, with
the time variable integrated out using Legendre polynomials. Here, unlike the previous implementation
that creates a larger (typically of size 8) mixed system of 2nd-order problems with quadratic elements
over triangles, we use C1 Bogner-Fox-Schmit bi-cubic elements over rectangles, with a new treatment of
boundary conditions in the common case of incomplete boundary data. This new method is 4th-order
accurate for sufficiently smooth functions. The new BC approach allows the use of homogeneous natural
boundary conditions on parts of the boundary where no measured data is available. This combined
effort is being reported elsewhere, but without extensive comparisons of difficult applications against the
literature. Here we will focus on three previously published examples using back reflected or transmitted
data with one or two inclusions. The new implementation in comparison gives markedly improved results
for inclusion recovery, all of which are achieved without use of additional aids such as weight functions
which have previously been thought to be essential. In addition the new implementation is shown to
be surprisingly robust with respect to noise. We conclude with two examples illustrating the effect of
increasing levels of noise.

1. INTRODUCTION

In this work we are using a diffusion PDE as an approximation for the more accurate transport PDE.
The Elliptic Systems Methods (ESM) was originally introduced for the solution of inverse problems using
time dependent data with just one source, but many detectors, in [11]. Many experiments, including
the case of incomplete data collection, were reported in [12,13]. In this method the inverse problem is
reduced to a system of overdetermined second-order boundary value problems (BVPs), with the time
variable integrated out using Legendre polynomials. As one approach to resolve this over-determination,
a fourth-order generalized biharmonic type equation was introduced to provide a well-posed problem. In
[11-13] the 4th-order elliptic system was solved by using a mixed form of the FEM splitting the system into
two adjoint system of 2nd-order PDEs which were then solved using quadratic elements over triangles.
With the most standard number of such Legendre polynomials being four, this led to a coupled system
of eight 2nd-order PDEs. It has been speculated that a more careful direct treatment of the solution
of the original system of (usually four) biharmonic type PDEs, combined with other improvements and
innovations, could potentially give significantly improved results.

In this paper we briefly describe such an implementation, and report on five numerical experiments.
We use Bogner-Fox-Schmit bi-cubic elements over rectangles as our higher-order finite element to dis-
cretize the 4th elliptic system. In [13] it was found necessary to introduce a weighting function into the
elliptic differential operator to successfully solve the incomplete data problems considered there. In this
work, we simply directly solve the system, without use of any weighting function, a process that was
found to be unsatisfactory in the implementation of [13]. We also introduce a new and more general
approach to the BC’s, along with a number of other innovations.

The focus point of interest in this paper, besides the details of the new implementation that will be
developed primarily elsewhere, will be a detailed comparison of the results from [13] which explored the
problem of coefficient recovery using limited data sets, primarily transmitted data alone or backscattered
data alone. In addition, the new method has been found to be rather robust with respect to noise. Two
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previously considered problems using just backscattered data will be considered at various noise levels
up to 30% to see where and how they begin to fail. In one case there will be a single inclusion, and in
the second rather more challenging case there will be two inclusions.

2. INVERSE PROBLEM AND ELLIPTIC SYSTEMS METHOD

Let u(x, t) be the near infrared (NIR) light intensity. The PDE governing NIR light propagation in a
turbid media is the transport parabolic equation. In [8] it was verified experimentally that the diffusion
equation provides a very good description for NIR light intensity in biological tissues when the distance
from the light source exceeds 7 times the transport mean free path. In this paper we will be using this
diffusion approximation given as follows:

{

ut(x, t) = div(D(x)∇u(x, t)) − a(x)u(x, t), x ∈ R2, t ∈ (0, T )
u(x, 0) = δ(x − x0),

(1)

where x0 is the location of a single source, D(x) is the diffusion coefficient and a(x) is the absorption
coefficient.

In practice NIR light propagates through a bounded domain Ω with heterogeneous material properties.
We assume the boundary δΩ is piecewise smooth. It is common to approximate this model by applying
Dirichlet BC’s a certain distance out from the physical domain creating an extended problem over an
artificial domain G past Ω [2]. We will assume for this paper that the diffusion D is constant, and that
the absorption a(x) is also constant except for certain inclusions in Ω located away from the boundary
δΩ. Thus let the absorption coefficient a(x) be a smooth function that can be approximated by

a(x) = a0 + h(x)

where a0 is the background absorption coefficient for light transport through uniform media. The quantity
h(x) is a unknown perturbation of a0 and estimating its locations and capacities (local integrals) will be
our main focus. Now the problem for light propagating through this bounded domain during the time
period (0, T ) may be re-described as:







ut(x, t) = div (D∇u(x, t)) − a(x)u(x, t) x ∈ G, t ∈ (0, T ),
u(x, 0) = δ(x − x0), x ∈ G, x0 ∈ G\Ω
u(x, t) = 0, x ∈ ∂G, t ∈ (0, T ).

(2)

The above eqn.(2) will serve to model our forward solver. The inverse problem is to use time dependent
data measured along part (incomplete data collection, which is the focus of this paper) or all of the
boundary δΩ contained inside G as additional data to determine an approximation for the absorption
perturbation h(x). Towards this goal, Klibanov and Lucas [11-13] introduced the ESM to derive an
iterative Newton-like method to recover h(x) for a series of well posed boundary value problems involving
a coupled system of elliptic PDE’s. We briefly outline this method in the following.

First let us define the normalized function: H(x, t) = u(x, t)/u0(x, t) − 1 for all x ∈ Ω, t ∈ (T0, TF ).
Next we let u(x, t) = u0(x, t)H(x, t)+u0(x, t) and a(x) = a0 +h(x), and substitute these into (2), leading
to [12]:

Ht(x, t) = div(D∇H(x, t)) + 2D
∇u0(x, t)

u0(x, t)
∇H(x, t) − h(x) − h(x)H(x, t). (3)

Let p(x, t) = Ht(x, t) and differentiate eqn.(3) with respect to t. Hence

pt(x, t) = div(D∇p(x, t)) + 2D
∂

∂t

(

∇u0(x, t)

u0(x, t)
∇H(x, t)

)

− h(x)p(x, t), (4)

thus eliminating the unknown perturbation h(x), except for the last term, which could be dropped as a
linearization, or used in an iterative Newton-like fashion as is done here. From values of p(x, t), H(x, t)
can be easily recovered. From (3) the perturbation term h(x) can be reconstructed by:

h(x) =
1

TF − T0

∫ TF

T0

[

div(D∇H(x, t)) + 2D
∇u0

u0
∇H(x, t) − h(x)H(x, t) − Ht(x, t)

]

dt. (5)
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This iterative approach will be presented in more detail in Section 5.
The second step is to build a coupled system of elliptic PDE’s to approximate eqn.(4) by use of a

generalized Fourier series in t to numerically approximate p(x, t). Let {lk(t)}∞k=1 be an orthonormal basis
in L2(T0, TF ) and lk(t)’s functions constructed from the Legendre polynomials normalized over (T0, TF )
to form this basis. Then for some positive integer K > 0, p(x, t) can be approximated well by the
generalized Fourier series

p(x, t) ≈

K
∑

i=1

li(t)qi(x), (x, t) ∈ Ω × (0, T ), (6)

where

qi(x) =

∫ TF

T0

p(x, t)li(t)dt, (7)

and we define Q(x) as [q1(x), q2(x), ..., qK(x)]T .
Assume that the light intensity u(xi, t) can be measured with some detectors located at points xi on

the boundary of Ω during the time period T0 < t < TF . From this data the approximate light intensity,
which we denote by ψ(x, t), can be obtained along those parts of the boundary using interpolation, for
example by cubic splines [4]. Then the boundary function p(x, t) can be evaluated by:

p |∂Ω×(T0,TF )=
∂

∂t

(

ψ

u0

)

= ψ1 (8)

Next consider the boundary conditions for the function Q(x). Let the vector f(x) = [f1(x), f2(x), ...,
fK(x)]T with fi(x) defined by

fi(x) =

∫ TF

T0

ψ1(x, t)li(t)dt for i = 1, 2, ...,K (9)

Following (4), (8) and (9), we obtain the following 2nd-order elliptic system:







LQ(x) = 0, x ∈ Ω
Q |∂Ω = f(x)
∂Q
∂n

|∂Ω = 0.
(10)

where L denotes a matrix operator with

LQ(x) ≡ div(D∇Q(x)) −

2
∑

j=1

Bj(x)
∂Q(x)

∂xj

− (h(x)I + C)Q(x), (11)

and I being a K × K identity matrix. That ∂Q
∂n

|∂Ω ≈ 0 was argued in [12]. The K × K matrices B1,B2

and C depend on the ratio ∇u0(x, t)/u0(x, t), and for 1 ≤ k, s ≤ K they are given by

(B1,B2)k,s = −2D

∫ TF

T0

lk (t)
∂

∂t

[

∇u0

u0

∫ t

0

ls (τ) dτ

]

dt

Ck,s =

∫ TF

T0

l
′

s(t)lk(t)dt.

The system of eqns (10) is overdetermined since there are two boundary conditions rather than one.
Various approaches can be used to take advantage of this to approximate h(x). The approach taken by
Klibanov and Lucas in the ESM [11-13] was to consider a 4th-order elliptic system by applying a formally
adjoint operator to the PDE system, thus leading to a well-posed problem. Let L

∗ be the operator
formally adjoint to L defined by

L
∗w(x) ≡ div(D∇w(x)) +

2
∑

j=1

∂

∂xj

(

B
T
j (x)w(x)

)

− (h(x)I + C
T )w(x).
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Then we have the 4th-order system of coupled equations:







(L∗
L)(Q(x)) = 0, x ∈ Ω

Q|∂Ω = f(x)
∂Q
∂n

|∂Ω = 0
(12)

which is a well-posed problem having a unique solution. This system was solved in [11-13] by splitting it
into a larger system of 2nd-order problems using C0 elements over triangles.

3. A NEW IMPLEMENTATION OF THE ESM INCLUDING TREATMENT OF IN-

COMPLETE BC’S

In this section we develop the variational form for a high-order FEM to discretize the 4th-order
coupled system of eqns (12) using C1 elements over rectangles. In addition, we will consider the important
practical case where boundary data for Q in (10) and (12) is only available on part of the boundary, a
case we refer to as incomplete boundary data [13]. Let the boundary ∂Ω be divided into two regions (not
necessarily connected): Γ1, where measurements (data) are available, and Γ2 where no measurements
(data) are available, with ∂Ω = Γ1 + Γ2. We will use essential BC’s on Γ1, fully using all available data,
and zero natural BC’s on Γ2, which will be seen to be a reasonable choice. An alternative would be
to assign zero values to the solution on Γ2, as was done in [13], in the hope that the values on Γ2 are
sufficiently small due to their distance from the source that this would be a useful approximation in the
absence of measured data values. In all cases we will assign ∂Q

∂n
to be zero on all of the boundary ∂Ω.

In the following variational formulation the test function v will be in the Sobolev space H2
0,E(Ω) of

functions whose partial derivatives up to the second-order are square integrable and satisfy the essential
(E) BC’s that v|Γ1

= 0 and ∂v
∂n

|∂Ω = 0. This corresponds to the assignment of known values to Q and
∂Q
∂n

, respectively. Let w ≡ LQ and introduce the notations (w, v) = wT v and (n1, n2) = n, the outward
unit normal to ∂Ω. Then

∫

Ω

(L∗w, v)dΩ =

∫

Ω

−D(∇w,∇v) − (w,B1vx1
+ B2vx2

) − ((hI + C
T )w, v)dΩ +

∫

Γ2

(

D
∂w

∂n
+ (BT

1 n1 + B
T
2 n2)w, v

)

dS

=

∫

Ω

(w,div(D∇v) −B1vx1
−B2vx2

− (hI + C)v) dΩ +

∫

Γ2

(

D
∂w

∂n
+ (BT

1 n1 + B
T
2 n2)w, v

)

dS.

Substituting w = LQ and recalling (11) we obtain

∫

Ω

(LQ,Lv)dΩ = 0 ∀v ∈ H2
0,E(Ω) (13)

Q|Γ1
= f(x) (14)

∂Q

∂n
|∂Ω = 0. (15)

The natural BC that D ∂(LQ)
∂n

+(BT
1 n1 +BT

2 n2)LQ equals zero follows as a consequence of the variational
method using the space H2

0,E(Ω), a result that seems very reasonable in light of (10).
Here we describe the FEM that will be applied to the above variational form of the system (12) as

generalized above to the case of incomplete boundary data. There are several articles which discuss the
solution of biharmonic problems by higher-order FEM’s [1,5,6,7,9,10]. In this paper, we consider a C1-
finite element approximation for a system of 4th-order biharmonic like PDE’s. Assume Ω is a rectangular
domain which is partitioned into m×n smaller rectangular meshes Ωi and Ω =

⋃m×n
i=1 Ωi. Each rectangular

mesh is affine equivalent to the reference domain [0, 1] × [0, 1] of Ωi. Since the differential operator L is
of fourth-order, we choose the Bogner-Fox-Schmit (BFS) rectangle [7], which is a finite element of class
C1, to obtain the discrete problem.

Let (ζ, η) be a generic element of Ω. Denote the approximate solution Qh by [qh
1 , qh

2 , ..., qh
K ]T for

some positive K in the Legendre approximation of p(x, t). The 16 degrees of freedom characterizing this

element are Qh’s values as well as ∂Qh

∂x1

, ∂Qh

∂x2

, ∂2Qh

∂x1∂x2

at each vertex of Ω. For the 2-D reference mesh, the
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shape functions are defined by a combination of the above shape functions. Thus integration on each
mesh can be transformed into the reference mesh which is easily evaluated on Ω as

∫

Ωi

(LQh(x, y), Lv(x, y))dxdy =

∫ 1

0

∫ 1

0

(LQh(ζ, η),Lv(ζ, η))|J|dζdη, where |J| is a Jacobian. (16)

We use the 4 × 4 Gaussian quadrature rule to evaluate the above integration. Assume [zj
1, z

j
2, z

j
3, z

j
4]

represent the unknowns at node j represented Qh, Qh
x1

, Qh
x2

, Qh
x1,x2

. Because Qh can be approximated by
the equation

Qh(ζ, η) =
∑

1≤i,j≤4

N j
i zj

i (17)

each computational grid has 16 degrees of freedom and this leads to a system of 16×16 coupled equations
when evaluating eqn.(16).

Furthermore, this finite element space can achieve up to 4th-order accuracy. Because of this high
accuracy in the solution, we will be able to prolong the recovered perturbation h from coarser grids into
finer grids, saving considerable computing time. This will be discussed in the next section.

4. PROLONGATION

For minimizing computing time, after computing the Qh’s using eqn.(12) on a coarse mesh we increase
the resolution of the reconstructed image through the eqn.(5) by using a prolongation method. This
achieves a higher quality recovery of h(x). The solution Qh derived by the Bogner-Fox-Schmit scheme
belongs to C1, so it’s natural to obtain the exact values of Qh, Qh

x1
, Qh

x2
, Qh

x1,x2
inside a finer grid using

exact values of the trial functions on the reference mesh. This leads us to implement a prolongation for
finer meshes using (17). This also makes it easy to evaluate interior values for a more accurate h(x)
recovery. We use bicubic spline interpolation to approximate the values of h(x) using the refined mesh
points.

5. IMAGE RECONSTRUCTION ALGORITHM

The coupled system (12) is nonlinear since the solution Q depends on an unknown h(x) term. Here
we consider a Newton-like algorithm to solve the above system of equations. Our image reconstruction
algorithm can be described as follows:

1. Construct the BC f(x) by interpolating the data readings from the detectors.
2. Let the initial perturbation term be h(0)(x) = 0, using given values of T0, TF .
3. For n = 1, 2, 3, ...

(a) Denote L
(n)Q(x) ≡ div(D∇Q(x)) −

∑2
j=1 Bj(x)∂Q(x)

∂xj
−

[

h(n−1)(x)I + C
]

Q(x).

(b) Discretize the corresponding variational problem (13)-(15) using finite elements over
Boger-Fox-Schmit rectangles [7].

(c) Solve the resulting linear system by Cholesky factorization.

(d) Evaluate H(n)(x, t) =
∑K

k=1

∫ t

0
lk(τ)dτQ

(n)
k (z(x)).

(e) Reconstruct the image using

h(n)(x) = 1
TF −T0

∫ TF

T0

[div(D∇H(n)(x, t)) + 2D∇u0

u0

∇H(n)(x, t) − h(n−1)(x)H(n)(x, t)

−H
(n)
t (x, t)]dt.

6. NUMERICAL SIMULATION

In this section we compare with the numerical experiments of [13]. In all cases the computational
region for the forward solver will be G=[−105, 105] × [−40, 40] with units in mm, assuming an envelope
of size 5 mm. The inverse solver will be applied to the region Ω=[−100, 100] × [−35, 35]. The source
will be located at (40, 35), on the upper right side. We add 1% multiplicative Gaussian noise to the
detector readings, meaning we use a distribution with mean zero and standard deviation σ = 0.005. The
homogeneous background values for the mean free path of scattering and absorption are lt=1.0 mm and
la = 250 mm, which are equivalent to diffusion and absorption coefficients of D = 0.075 mm2/ps, and
a = 0.0009 ps−1. Here we use a computation mesh of 65 × 33 with a prolongation to 256× 256. We will
use in all cases the values T0 = 3000 ps and TF = 9000 ps.
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We placed 41 uniformly distributed detectors on both horizontal sides of the rectangle Ω, and used
selected readings from these varying with the simulation. In each numerical experiment the detectors
where data is used are both identified by intervals and also marked by small black dots in the corre-
sponding figure. The (fixed) source position is marked with a large star. Cubic spline interpolation was
used to recover values in between detector locations. Outside these intervals, natural BC’s were used as
described in Section 3.

We selected cylindrical inclusion(s) with a radius of 3 mm. These are marked as a black ring inside
all figures to represent the correct position of the target inclusion. For a measurement of accuracy, we
denote Dev be the distance between the location of the maximum recovered value of the inclusion and
the actual inclusion center.

For Numerical Experiments 1 - 3, we have simulated a single inclusion of radius 3 mm with h(x) =
0.0045, and constant scattering coefficient. The data was collected either on the top (back reflected
information) or on the bottom (transmitted) side. We also consider the case of two inclusions using back
reflected data. The stopping criterion for the Newton-like iteration is a change of no more than 2% in
the relative error over the reportage region from one iteration to the next.

In Numerical Experiments 4 - 5, we are challenging the robustness of our code by increasing the
noise levels from 5% to 30% observing how and when the method fails. As the noise level is increased,
the approximation of p(x, t) will cause some difficulties for the convergence of the Newton-like algorithm.
Here we add one more criterion for stopping: stop if there is an increase in the relative error after iteration
number 6.

Numerical Experiment 1: Transmitted data. In the first test we chose an interval of (−85, 20)
on the bottom side. The simulated inclusion was located at (−10,−10). Figure 1 shows the recon-
structed image with reported center (−12.5,−10.9) with Dev= 2.66 mm while in [13] it was reported at
(−12.5,−13.1), with Dev= 3.98 mm. In [13] it was necessary to use a weight function applied in the
region [−65, 27] × [−25, 30] to control the reconstructed image. We have a similar image quality to that
of [13], but with a superior center. In [13] if no weight function had been used the image was reported
to be unsatisfactory, with a center of (−12.5,−17.5), Dev= 7.91 mm.

−100 −80 −60 −40 −20 0 20 40 60 80 100

−30

−20

−10

0

10

20

30

Figure 1: Recovered Inclusion and detector positions for Test 1: 1% Gaussian noise using transmitted
detectors. The center of the image is reported at (−12.5,−10.9) improving on (−12.5,−13.1).

Numerical Experiment 2: Back reflected data. In the second test we used back reflected data on
the interval (−85, 20) on the top side. The inclusion has the same geometry as in Numerical Experiment
1, but the center location has been moved upward to (−10, 10). Figure 2a shows the reconstructed image
with reported center (−13.3, 10.7), Dev= 3.40 mm. In this case we have much better results in image
quality. In [13] the center was reported at (−12.5, 13.1), Dev= 3.98 mm by using a weight function.

Numerical Experiment 3: Two inclusions using back reflected data. Here we added a second
inclusion at the location (−50, 10) again with a radius of 3 mm and the same value as before. The detectors
are the same back reflected ones as before. Figure 2b shows the reconstructed image with reported center
(−50.8, 6.3), (−13.3, 10.7), Dev= 3.79, 3.37, respectively. In [13], using the weight function the centers
were reported at (−56.2, 10.9), (−12.5, 13.1), with the considerably larger values of Dev= 6.26, 3.98,
respectively. Without the weight function in [13], the results were reported as (−54.7, 22.4), (−3.1, 3.3)
with Dev= 13.3, 9.6.
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Numerical Experiment 4: Back reflected data at various levels of noise with a single

inclusion. Here we use the same conditions as in Numerical Experiment 2, but tested various Gaussian
noise levels: 5%, 10%, 15%, 20%, 25%, 30%. All reconstructed images are shown in Figure 3. For
purposes of convenience and reportage, a visually identified region of (−12, 12) × (−25, 5) is used for
the application of watching region. Inside this region there is reportage on 5 expressions: X0, Y0, Max,
Dev and Cap, where (X0, Y0) gives the location of the maximum recovered value of the inclusion. There
is an increasing realization [13] that while it is difficult to recover the correct geometry and magnitude
of the inclusion separately, the recovery of the capacity, defined as the product of the volume and the
absorption perturbation, is more achievable. This recovery is reported as Cap in Table 1. The correct Cap

value is 0.127 for all experiments. As our recovery results vary in space, our calculations are evaluated
by numerical integration. From an inspection of Figure 3, it appears that in this example the method
deteriorates gradually with increasing noise, becoming progressively less satisfactory as noise increases
from 10%.

Noise Max (X0, Y0) Dev Cap

1% 0.291E-3 (-13.3,10.7) 3.40 0.098
5% 0.322E-3 (-13.3,10.9) 3.42 0.099
10% 0.385E-3 (-13.3,10.6) 3.35 0.112
15% 0.440E-3 (-13.3,10.7) 3.40 0.137
20% 0.511E-3 (-13.3, 8.5) 3.62 0.154
25% 0.540E-3 (-13.3, 8.5) 3.62 0.164
30% 0.624E-3 (-15.6,-4.9) 15.81 0.178

Table 1: Performance measurements for various noise levels using back reflected detectors. The correct
Cap value was 0.127, with center of (−10, 10).

Numerical Experiment 5: Back reflected data at various levels of noise with 2 inclusions.

Here we use exactly the same conditions as in Numerical Experiment 3, but increase the noise level up
to 20%. The results are shown in Table 2 and Figure 4. Our recovery fails for the left inclusion when the
noise level is somewhere between 5% and 10%.

incl. (-10,10), Cap=0.127 incl. (-50,10), Cap=0.127
Noise Max (X0, Y0) Dev Cap Max (X0, Y0) Dev Cap

1% 0.29E-3 (-13.3,10.7) 3.37 0.101 0.37E-3 (-50.8, 6.3) 3.79 0.128
5% 0.33E-3 (-13.3,10.7) 3.37 0.103 0.31E-3 (-47.7, 8.5) 2.75 0.105
10% 0.39E-3 (-13.3,10.7) 3.37 0.122 0.31E-3 (-44.5,10.7) 5.54 0.085
15% 0.46E-3 (-13.3,10.4) 3.32 0.136 0.40E-3 (-61.7,18.6) 14.5 0.075
20% 0.52E-3 (-13.3, 8.5) 3.62 0.157 0.53E-3 (-61.7,18.3) 14.3 0.077

Table 2: Performance measurements for 2 inclusions under various noise levels using back reflected
detectors.

7. CONCLUSIONS

A new implementation of the ESM is presented using C1-finite elements over Boger-Fox-Schmit rectan-
gles. In addition, a novel treatment of incomplete boundary data is developed and applied. Comparisons
with previously published results using incomplete boundary data, both of transmitted and back reflected
type, are made. The implementation is shown to markedly improve the quality of the results in two im-
portant ways: more accurate centers and no need to use a weighting function. In the previous work, the
results with the base method, without use of a weighting function, were unacceptable. In addition, the
method is shown to accept remarkably high levels of noise. It is our opinion that the markedly improved
quality is due to a combination of improved approaches in the new implementation, including use of: a
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(a) Numerical Experiment 2: One Inclusion, back re-
flected.

−100 −80 −60 −40 −20 0 20 40 60 80 100

−30

−20

−10

0

10

20

30

(b) Numerical Experiment 3: Two Inclusions, back re-
flected.

Figure 2: Recovered Inclusion(s) for Numerical Experiments 2 and 3 using 1% Gaussian noise. The
positions of the back reflected detectors and the source are also shown.
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(a) 5% noise
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(b) 10% noise
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(c) 15% noise
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(d) 20% noise
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(e) 25% noise
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(f) 30% noise

Figure 3: One recovered inclusion and detector position for Numerical Experiment 4: Gaussian noise of
5%, 10%, 15%, 20%, 25%, 30% using back reflected detectors.
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(b) 10% noise
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(d) 20% noise

Figure 4: Two recovered inclusions and detector positions for Numerical Experiment 5: Gaussian noise
of 5%, 10%, 15%, 20% using back reflected detectors.
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more sophisticated fourth-order FEM method, a more general treatment of the boundary conditions, and
a variety of other additional factors.
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